
PREPRINT MCS-P422-0394, MATHEMATICS AND COMPUTER SCIENCE DIVISION,ARGONNE NATIONAL LABORATORYLIBRARIES FORPARALLEL PARADIGM INTEGRATIONIan Foster and Ming XuMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 60439, U.S.A.ABSTRACTA programming paradigm is a method for structuring programs in order to reducethe complexity of the programming task. In parallel programming, task and dataparallelism are the most common paradigms, although object, functional, logic, anddatabase parallelism are also used. Most existing programming languages and toolsare designed to support either task parallelism or data parallelism. Yet there are manyapplications that can bene�t from a combination of both paradigms. For example,image processing problems can exploit the regularity of data-parallel computationwithin each stage of a pipeline. This process requires tools that support both taskand data parallelism and that allow task- and data-parallel components to interact.In particular, it should be possible to reuse libraries developed in either paradigm ina variety of situations. To meet these requirements, we have designed a small set ofextensions to Fortran, called Fortran M, that provides a framework on which portable,reusable libraries can be built to implement programming paradigms. In this paper,we illustrate the approach by showing how it is used to implement libraries for �leI/O, message-passing, and data-parallel computation.1. INTRODUCTIONMost existing parallel programming tools are designed to support a single-programmultiple-data (SPMD) or data-parallel programming model, in which each processorexecutes the same program but operates on di�erent data. This model is fundamentalto data-parallel languages such as C* and High Performance Fortran and accountsfor the bulk of programs written in message passing libraries such as MPI, p4, and



PVM. The advantages of the data-parallel approach include regular communicationpatterns and ease of programming and debugging.Nevertheless, an increasing number of parallel applications have a richer structurein which threads of control may execute di�erent programs and may be created anddeleted dynamically. This is the case, for example, in multidisciplinary simulation,in which a complex system (such as an aircraft) is constructed by coupling modelsof system components (such as 
uid dynamics, structural mechanics, surface heating,and controls). Similarly, image-processing algorithms often have a heterogeneouspipeline structure that is not naturally represented in an SPMD context. Theseapplications require what is often called task parallelism.Data and task parallelism are often seen as opposing approaches to programming.Yet in practice we �nd that applications frequently include both task- and data-parallel components. For example, although the interactions between the componentsof a multidisciplinary simulation involves task parallelism, individual components maywell admit to a data-parallel solution. In these and other applications, the ability tointegrate multiple paradigms in a single program has the potential for improvingboth programmer productivity and performance. A lack of tools, however, makes thedevelopment of such multiparadigm applications di�cult in practice.In this paper, we introduce an approach to multiparadigm programming basedon language extensions. The idea is to de�ne a small set of extensions to an existingsequential language that can be used to specify concurrency, communication, synchro-nization, and mapping. They also provide what we call compositionality, meaning thatprogram components encapsulating concurrency, communication, and mapping deci-sions can be reused in di�erent situations without concern for internal implementationdetails. The extended sequential language is then used to write paradigm libraries thatsupport various paradigms. Thanks to compositionality, paradigm libraries can be in-tegrated in 
exible ways to implementmultiparadigmprograms. In this paper, we usean extended Fortran called Fortran M (FM) [6] to illustrate the approach; however,the basic ideas are language independent. In a related e�ort, colleagues at Caltechare using an extended C++ for the same purpose [3].To explore the utility of the FM extensions for multiparadigm programming, wehave been working with colleagues to develop libraries for the integration of messagepassing, for data parallel programming [5, 2], for redirection of �le I/O, for scienti�cprogramming \templates," and for exploitation of parallelism in automatic di�eren-tiation [1]. In this paper, we describe the mechanisms used to support the �rst threeof these applications. 2. FORTRAN MFortran M (FM) is a language designed by researchers at Argonne and Caltechfor expressing task-parallel computation [6]. It comprises a small set of extensionsto Fortran and provides a message-passing parallel programming model, in whichprograms create processes that interact by sending and receiving messages on typedchannels. Two key features of the extensions are their support for determinism andmodularity.FM is currently de�ned as extensions to Fortran 77; however, equivalent extensionscan easily be de�ned for Fortran 90. For clarity, we use some Fortran 90 syntax in2



program aerodynamicsinport (integer, real x(10,20), real y(10,20)) pioutport (integer, real x(10,20), real y(10,20)) po...channel(in=pi,out=po)channel(in=qi,out=qo)...processesprocesscall controls(pi,qo)processcall structures(qi,po)endprocessesendprocess controls(inp,outp)inport (integer, real x(10,20), real y(10,20)) inpoutport (integer, integer, real x(10,10,3)) outp...send(outp) i, j, areceive(inp) nstep, u, v...endFigure 1: Sketch of a Multidisciplinary Program, Using FMsubsequent sections when discussing integration of FM and HPF.2.1 Concurrency and CommunicationFM provides constructs for de�ning program modules called processes; for spec-ifying that processes are to execute concurrently; for establishing typed, one-to-onecommunication channels between processes; and for sending and receiving messageson channels. Send and receive operations are modeled on Fortran �le I/O statementsbut operate on port variables rather than unit numbers.The FM programming model is dynamic: processes and channels can be createdand deleted dynamically, and references to channels can be included in messages.Nevertheless, computation can be guaranteed to be deterministic; this feature avoidsthe race conditions that plague many parallel programming systems. Determinismis guaranteed by de�ning operations on port variables to prevent multiple processesfrom sending concurrently, by requiring receivers to block until data is available,and by enforcing a copy-in/copy-out semantics on variables passed as arguments toprocesses. Nondeterministic constructs are also provided for programs that operatein nondeterministic environments.Figure 1 illustrates the use of several FM constructs. The �rst code fragment usesthe channel statement to create two channels and a process block (delineated byprocesses and endprocesses statements) to create two processes called controls3



and structures. These execute concurrently, on the same or di�erent processors.The second code fragment implements the controls process; it uses the send andreceive statements to send and receive data on the ports passed as arguments. Mes-sage formats are de�ned by the port declarations, allowing a FM compiler to generatee�cient communication code and to convert to a machine-independent format in aheterogeneous environment.2.2 Resource ManagementFM resource management constructs allow the programmer to specify how pro-cesses and data are to be mapped to processors and hence how computational re-sources are to be allocated to di�erent parts of a program. These constructs in
uenceperformance but not correctness. Hence, we can develop a program on a uniprocessorand then tune performance on a parallel computer by changing mapping constructs.FM process placement constructs are based on the concept of a virtual computer:a collection of virtual processors, which may or may not have the same shape asthe physical computer on which a program executes. A virtual computer is an N -dimensional array, and mapping constructs are modeled on array manipulation con-structs. The processors declaration speci�es the shape and dimension of a processorarray, the location annotation maps processes to speci�ed elements of this array, andthe submachine annotation speci�es that a process should execute in a subset of thearray. For example, the following code places the controls and structures processeson di�erent virtual processors.processors(2)...processesprocesscall controls(...) location(1)processcall structures(...) location(2)endprocessesIn contrast, the following code places each process in a submachine comprising 10virtual processors. This would be useful, for example, if the processes were themselvesparallel programs, written in FM or using a SPMD library.processors(20)...processesprocesscall controls(...) submachine(1:10)processcall structures(...) submachine(11:20)endprocesses3. FILE INPUT/OUPUT LIBRARIESOur �rst example of a paradigm library is almost trivial but nevertheless useful.This is a �le I/O compatibility library (FIOCL). With FIOCL, programs that were4



designed originally to interact with their environment by reading and writing �lescan be integrated into a task-parallel framework by reinterpreting �le read and writeoperations as receive and send operations on channels. The library uses FM processesto encapsulate di�erent programs and channels to represent the \virtual �les" onwhich these programs perform read and write operations.A program that is to be integrated into an FM framework must be modi�ed toincorporate calls to FIOCL subroutines assoc inport and assoc outport. Theseassociate a Fortran �le with an FM inport or outport, respectively, and cause sub-sequent read or write operations on the �le to be implemented as receive and sendoperations. The program must also be converted into a process. It can then beplugged together with other programs by FM code that creates the required channelsand passes the associated inports and outports to these programs.We illustrate the approach with an example similar to that used in the precedingsection. Figure 2 sketches versions of programs controls and structure that havebeen adapted to operate by using the FM �le I/O library. The two programs areassumed to read and write �le data, respectively. To allow the two programs tooperate concurrently, we add to both programs a process declaration and add threestatements (indicated by comments) that declare a port, include some de�nitions,and specify that the �le operated on by the program is to be associated with a port.Subsequent open, read, and write operations then operate on the speci�ed �les. Thecode that sets up the necessary channel and invokes the two components is also shown.We have not yet discussed the mechanism by which I/O statements are madeto operate on ports rather than �les. In a language such as C, I/O operations areimplemented as library calls; hence, it would su�ce to link application programs witha modi�ed I/O library that checked each I/O operation to see whether it concerneda �le or a channel. As this approach is not possible in Fortran, we introduce a simplepreprocessor that replaces I/O calls with calls to library routines. For example, awrite statement is replaced with \call fiocl write".4. MESSAGE-PASSING LIBRARIESWe now describe a message-passing compatibility library (MPCL) that allowsprograms developed using message-passing (MP) libraries (e.g., p4, PVM, Express) tobe integrated into a more general task-parallel framework. This allows MP programsto be invoked from FM and permits MP programs to call FM routines. The invokingprogram can use FM virtual computer constructs to specify the resources (virtualprocessors) that will be available to the MP program; the MP program executesas if these virtual processors were physical processors, and performs ordinary MPcalls. Various FM data structures can be passed as arguments to the MP program.These data structures can be either replicated or partitioned over virtual processors.Ports passed as arguments allow an MP program to communicate with other programcomponents. Figure 3 illustrates some of these ideas. The enclosing oval representsa FM process, with local data structures X and Y. The enclosed execution graphrepresents initiation of an MP program on four virtual processors, with argument Xscattered and Y replicated.MPCL consists of two components: an interface routine that sets up the N2 chan-nels required to allow N processes to communicate with each other, and then invokes5



program aerodynamicsinport (integer n, character buff(n)) pioutport (integer n, character buff(n)) pochannel(in=pi,out=po) ! Create channelprocesses ! Create processesprocesscall controls(pi)processcall structures(po)endprocessesendprocess controls(pi)inport (...) po! Inport for communicationinclude 'aio.inc'! File I/O library de�nitionscall assoc inport('indata',pi)! Associate �le with inport...open(unit=11, file='indata')...read(11,99) a, b, c99 format(3F10.2)...endprocess structures(po)outport (...) po! Outport for communicationinclude 'aio.inc'! File I/O library de�nitionscall assoc outport('outdata', po)! Associate �le with inport...open(unit=9, file='outdata')...write(9,99) a, b, c99 format(3F10.2)...end Figure 2: Using the File I/O Library6
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Figure 3: Invoking a Message-Passing Program from FMan MP program in N processes; and a set of FM implementations of a particularMP library's routines (e.g., p4send, p4recv, etc., in p4). MPCL currently supportssubsets of the p4, PICL, and Express libraries.The interface code has a structure similar to that shown in Figure 4. This exam-ple program is intended to initiate execution of the MP program prog, passing FMvariables X and Y as arguments (partitioned and replicated, respectively). It createsN instances of a process prog wrap, passing each an array of N outports, which can beused to send messages to the other processes, and a single inport, on which messagesfrom other processes are received. The N outports destined for a single process areassociated with that process's inport by the nondeterministic MERGER construct. Thesubroutine prog wrap stores the ports and other information passed as arguments ina common block (de�ned in the include �le mp.inc) and then invokes prog.The FM implementations of the MP library routines use the channel structurecreated by the initialization routine to implement send, receive, and other operations.For example, the following is an implementation of a generic mp send operation thatallows the caller to specify a tag, message size, message contents, and destination.The array outps contains the outports passed as arguments to the prog wrap calland stored in a common block by stash ports.subroutine mp send(tag,size,msg,dest)integer tag, size, dest ! Message tag, size, dest.character msg(size) ! The data to be communicatedinclude 'mp.inc' ! Include �le with channelssend (outps(dest)) tag, size, msg ! Send message to destreturnendAlthough the interface code in Figure 4 is not especially complicated, it wouldnevertheless be useful if we could encapsulate it in a channel setup and message-passing setup library. This library would have to be parameterized with the name of7



real x(N,M), youtport (integer n, character buff(n)) outps(N,N)inport (integer n, character buff(n)) incps(N)do i=1,Nmerger(in=inps(i),out=(outps(i,j),j=1,N))enddoprocessdo i = 1,Nprocesscall prog wrap(i,N,outps(i,1:N), inp(i), x(i,1:M), y)endprocessdoprocess prog wrap(num,outps,inp,arg1, arg2)outport (integer n, character buff(n)) outps(N,N)inport (integer n, character buff(n)) inps(N)real arg1(M), arg2include 'mp.inc'call stash ports(num,inp,outps)call prog(arg1,arg2)enddo Figure 4: FM Wrapper Code for Message-Passing Programthe message-passing process (in our case, prog) and the number and distribution ofthe user arguments passed (e.g., X and Y). Unfortunately, since Fortran 77 supportsneither higher-order functions nor variable-length argument lists, a parameterizedlibrary of this sort is not possible.We circumvent this problem by providing a preprocessor that generates the re-quired interface code. This preprocessor allows the user to use an mpcall statementto invoke an MP program and a scatter statement to specify that an array variableshould be partitioned when passed as an argument to an MP program. (BLOCK distri-butions in one or two dimensions are currently supported.) Together, these featuresallow us to replace Figure 4 with the following statements.real x(N,M), yscatter x(BLOCK,*)mpcall prog(x,y)The use of these features is further illustrated in the following code fragment,which invokes two MP programs, controls and structures, one after the other,passing the variable X as an argument to both.program mainprocessors pr(64)real x(512, 512)scatter x(*,BLOCK)...mpcall controls(x) 8
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Figure 5: Bandwidth of FM, MPCL, and p4 on Ethernet...mpcall structures(x)We are conducting detailed performance studies to determine whether this library-based approach to the integration of message-passing programs leads to signi�cantoverhead. Some preliminary results are presented in Figure 5. This shows achievedbandwidth, as measured by timing a simple program that bounces messages of varyingsize between two processors, on two Ethernet-connected Sparc-2 workstations. Re-sults are given for versions of the program written in FM, in p4 using the compatibilitylibrary (MPCL), and in raw p4. We see that FM and p4 provide comparable perfor-mance for smaller messages, but that p4 is slightly faster for larger messages. MPCLis consistently about ten per cent slower than FM or p4. We expect that this overhead(which is quite acceptable for many applications) can be reduced signi�cantly.5. HIGH PERFORMANCE FORTRANThe mechanisms described in the preceding section can also be used to integrateprograms written in High Performance Fortran (HPF). HPF compilers typically com-pile HPF programs to Fortran plus calls to message-passing libraries. Hence, a simpleintegration strategy is �rst to compile the HPF program using an HPF compiler andthen to link the resulting code with the FM message-passing library. We have pursuedthis approach successfully in collaboration with Bhaven Avalani and Alok Choudharyof Syracuse University [5]. This allows us to write code similar to the following. This9



code fragment implements an image-processing convolution pipeline, in which twoinput image streams 
ow through two forward fast Fourier transform (FFT) stages,and then through a multiplication and inverse FFT stage. We have demonstrated thisapplication on the IBM SP1 and shown that this mixed task/data-parallel formulationcan provide performance superior to that of a purely data-parallel program.C FM Main Program for Mixed Algorithmprogram mixed parallelprocessors pr(24)outport (complex x(512,512/8)) outs1(8), outs2(8)inport (complex x(512,512/8)) ins1(8), ins2(8)channel(in=ins1(:), out=outs1(:))channel(in=ins2(:), out=outs2(:))processesmpcall fft(nimages, outs1) submachine(1:8)mpcall fft(nimages, outs2) submachine(9:16)mpcall ifft(ins1, ins2) submachine(17:24)endprocessesThis approach allows the integration of HPF procedures into FM task-parallelprograms. FM data structures can be passed as arguments to HPF procedures. Thisrequires either that the FM library has knowledge of the data structures used inthe HPF compiler or that the HPF compiler is aware of the format of the FM datastructures. We have adopted the former approach.FM port variables can also be passed as arguments to HPF procedures, providingin principle a mechanism by which HPF programs can communicate with other, con-currently executing, HPF or FM procedures. This can be achieved without extensionsto the HPF compiler by (a) representing these variables within HPF in terms of therepresentation used by the FM compiler (which happens to be integers), and (b) us-ing the HPF extrinsic procedure mechanism to invoke FM procedures that operate onthese variables. This approach is simple but inelegant. An alternative approach is toextend HPF with port data types and data-parallel send and receive operations thatsend and receive arrays and scalars on arrays of outports and inports, respectively.We are currently pursuing this approach in collaboration with Syracuse.6. RELATED WORKTwo alternative approaches to multiparadigm programming are new languagesand libraries. New languages can provide direct support for both the SPMD andtask-parallel programmingmodels; however, they can require considerable investmentcompiler development, code conversion, and user training. In the library approach,paradigm libraries make direct calls to low-level primitives for task creation, commu-nication, and synchronization, rather than using language extensions. This avoids theneed for compiler development but lacks desirable properties such as compositionalityand compile-time checking.More limited in scope are approaches based on the use of a task-parallel coordi-nation language able to invoke data-parallel computations. For example, Cheng et10



al. propose the use of the AVS data
ow visualization system to implement multidis-ciplinary applications, in which some components may be data-parallel programs [4].This provides an elegant graphical programming model but is less expressive thanthe approach described here. For example, cyclic communication structures are noteasily expressed. Similarly, Quinn et al. describe work on iWARP in which a con�gu-ration language is used to connect Dataparallel C computations [8]. The DataparallelC programs use specialized versions of C I/O libraries for communication. Processand communication structures are static, and all communication passes via a centralcommunication server.Subhlok et al. describe a compile-time approach for exploiting task and dataparallelism on the iWarp mesh-connected multicomputer [10]. The input programincorporates HPF-like data parallel constructs and directives indicating data depen-dencies and parallel sections. An appropriate mix of task and data parallelism is thengenerated automatically by the compiler. The use of FM and data-parallel paradigmlibraries permits more general and dynamic forms of task parallelism but also requiresmore programmer intervention.7. CONCLUSIONSWe have used three simple examples to show how the FM extensions to Fortrancan be used to develop libraries that support the integration of programs developedusing diverse paradigms into a single task-parallel framework. These libraries useFM processes to encapsulate message-passing computation, channels to implementcommunication, and virtual computer constructs to control resource allocation. Theresulting programs can be reused in any environment.In general, we prefer to support the integration of a new paradigm by means of alibrary rather than additional language extensions. The limitations of Fortran syntax,however, often encourage us to use simple source transformations to facilitate the useof a particular paradigm. In some cases, these transformations are essential (FIOCL);in others, they are cosmetic (MPCL, HPF). These extensions are incorporated in apreprocessor; if they prove to be genuinely useful, we might eventually incorporatethem into our FM compiler.Our future plans include the development of Fortran 90 language extensions to sup-port multiparadigm programs; the more modern constructs provided by Fortran 90,including structured data types and dynamic memory allocation, can support a morepowerful set of primitives. We are also investigating compiler and runtime systemoptimization techniques and the integration of paradigm libraries written in di�er-ent languages. In the latter area, a particular focus is integration with the CC++language under development at Caltech [3]. This task is simpli�ed by the fact thatCC++ and FM use the same runtime system.More information on this work is available via Mosaic at the following address:http://www.mcs.anl.gov/fortran-m/FM.html.In addition, a FM compiler is available from anonymous ftp server info.mcs.anl.gov,in directory pub/fortran-m. 11
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